An Extension of the Cayley–hamilton Theorem for Nonlinear Time–varying Systems

نویسنده

  • TADEUSZ KACZOREK
چکیده

The classical Cayley-Hamilton theorem (Gantmacher, 1974; Kaczorek, 1988; Lancaster, 1969) says that every square matrix satisfies its own characteristic equation. Let A ∈ Cn×n (the set of n × n complex matrices) and p(s) = det[Ins − A] = ∑n i=0 a si, (an = 1) be the characteristic polynomial of A. Then p(A) = ∑n i=0 aiA i = 0n (the n × n zero matrix). The Cayley Hamilton theorem was extended to rectangular matrices (Kaczorek, 1988; 1995c), block matrices (Kaczorek, 1995b; Victoria, 1982), pairs of commuting matrices (Chang and Chan, 1992; Lewis, 1982; 1986; Kaczorek, 1988), pairs of block matrices (Kaczorek, 1988; 1998) as well as standard and singular two-dimensional linear (2-D) systems (Kaczorek, 1992; 1995a; Smart and Barnett, 1989; Theodoru, 1989). The Cayley-Hamilton theorem and its generalizations were used in control systems, electrical circuits, systems with delays, singular systems, 2-D linear systems, etc., cf. (Busłowicz, 1981; 1982; Kaczorek, 1992; 1994; Lewis, 1982; Mcrtizios and Christodolous, 1986).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...

متن کامل

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

Finite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay

In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006